Groundwater Monitoring System for Retrofitted Bottom Ash Pond (BAP) Cardinal Operating Company – Cardinal Power Plant 306 County Road 7E Brilliant, Ohio

January 3, 2022

Submitted to:

Cardinal Operating Company 306 County Road 7E Brilliant, Ohio 43913

Submitted by:

Cox-Colvin & Associates, Inc. 7750 Corporate Blvd. Plain City, Ohio 43064 (614) 526-2040

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page i of ii

Table of Contents

1.0	Introduction	l										
2.0	Background Information											
	2.1 Construction and Operational History	2										
	2.2 Retrofit of the BAP	3										
	2.3 Historical Groundwater Monitoring	3										
3.0	Hydrogeologic Setting	5										
	3.1 Climate	5										
	3.2 Geologic Setting	5										
	3.3 Hydrogeologic Setting	5										
	3.3.1 Groundwater Use	5										
	3.3.2 Surface Water Control	5										
	3.3.3 Hydraulic Conductivity and Effective Porosity	7										
	3.3.4 Groundwater Flow Direction and Velocities	7										
4.0	Monitoring System Evaluation)										
	4.1 Performance Standard)										
	4.2 Site Specific Technical Evaluation)										
	4.3 Number of Wells	l										
	4.4 Multiple CCR Units	l										
	4.5 Monitoring Well System Construction	2										
	4.5.1 Monitor Well Construction	2										
	4.5.2 Groundwater Monitoring Program	2										
5.0	Professional Engineer Certification1	5										
6.0	References	5										

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page ii of ii

Figures

- 1-1 Facility Layout
- 2-1 Historical BAP Groundwater Monitoring Network
- 2-2 Retrofitted BAP Groundwater Monitoring System
- 3-1A Geologic Cross-Section A-A'
- 3-1B Geologic Cross-Section B-B'
- 3-1C Geologic Cross-Section C-C'
- 3-2A Potentiometric Surface Map Uppermost Aquifer, BAP, April 5, 2021
- 3-2B Potentiometric Surface Map Uppermost Aquifer, BAP, July 29, 2021
- 3-2C Potentiometric Surface Map Uppermost Aquifer, BAP, August 12, 2021
- 3-2D Potentiometric Surface Map Uppermost Aquifer, BAP, September 15, 2021

Tables

- 3-1 2020 NOAA Climatological Summary for New Cumberland, West Virginia
- 3-2 Hydraulic Conductivity, Retrofitted BAP, Cardinal Power Plant, Brilliant, Ohio

Appendices

- A Slug Test Results
- B Boring Logs
- C Monitor Well Construction Logs

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 1 of 16

I.0 Introduction

Cox-Colvin & Associates, Inc. (Cox-Colvin) is pleased to provide Cardinal Operating Company (Cardinal) with this Groundwater Monitoring System report for the retrofitted Bottom Ash Pond (BAP) for their power plant located at 306 County Road 7E in Brilliant, Ohio (Site, Figure 1-1).

This report was prepared in accordance with the Federal Coal Combustion Residual (CCR) rules in 40 Code of Federal Regulations (CFR) 257 Subpart D. It is intended to cover recent updates associated with Cardinal's Bottom Ash Pond (BAP), which received a Permit-to-Install (PTI) from Ohio EPA on March 16, 2021, to retrofit the southern portion of the pond with a CCR compliant liner to continue receiving bottom ash (Sargent & Lundy 2020b). Upon completion of the BAP retrofit, the groundwater monitoring system described in this report will supersede the system presented in the initial Groundwater Monitoring Network Evaluation (Geosyntec 2016a).

The horizontal coordinate values provided in this report are based upon the North American Datum of 1927 (NAD27). The vertical datum used for reporting the elevations within this report is National Geodetic Vertical Datum of 1929 (NGVD 29).

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 2 of 16

2.0 Background Information

Cardinal operates a three-unit, 1,800-megawatt total capacity coal-fired generating station. Each generating unit (Units 1, 2, and 3) is equipped with an electrostatic precipitator for removal of fly ash particulate matter, a selective catalytic reduction (SCR) system for removal of nitrogen oxide, and flue gas desulphurization (FGD) systems for removal of sulfur dioxide (Geosyntec 2016a).

The retrofitted BAP, previously referred to as the South Pond of the Bottom Ash Complex (BAC), is situated along the Ohio River south of Cardinal Plant Unit 3 and will receive bottom ash sluicing discharge. An excavator placed on an "island" or "peninsula" of deposited bottom ash in the center of the pond will be used to dredge settled bottom ash from the pond for dewatering. Once dewatered, the ash will be loaded onto trucks and either beneficially used as construction material or placed in the Fly Ash Reservoir (FAR) I Solid Waste Landfill (RSW Landfill), a dry landfill disposal unit located north of the plant. Water will be recirculated for bottom ash sluicing. There will be no discharge facilities from the BAP, except for a blowdown line to the Unit 3 FGD system to control the water level in the pond and to manage water quality (Sargent & Lundy 2020b).

2.1 Construction and Operational History

The BAP, prior to the 2021 retrofit, was originally constructed in the 1960s as part of the construction of Generating Units 1 and 2. The pond was modified in 1974, including the addition of a berm separating the pond. Cardinal used these two surface impoundments to manage sluiced bottom ash, along with miscellaneous non-CCR low volume waste (LVW) streams and stormwater runoff. Together, these impoundments were referred to as the BAC, consisting of a bottom ash pond (North Pond) and a recirculation pond (South Pond). The ponds remained connected by a pipe and were, therefore, treated as a single unit monitored as the "BAP" CCR unit. The new, retrofitted BAP covers only a portion of the area of the historical BAP (refer to Figure 2-1 and Section 2.2). The base of the South Pond was constructed at an elevation of approximately 652 feet, and the north pond was constructed at approximately 648 ft. Both of the ponds were previously unlined.

In 2008, the South Pond was further divided into two areas separated by a PVC sheet pile baffle wall where water on the north side of the baffle was recirculated back to the Generating Units for ash sluicing, while the south side of the baffle was used as an area for settlement before discharging, if necessary.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 3 of 16

2.2 Retrofit of the BAP

Cardinal has determined that the BAP, formerly South Pond of the BAC, has sufficient size to process the current loading of bottom ash and obtain target recirculation water quality. After all existing CCR and CCR-impacted materials have been removed, as well as the PVC baffle wall, the South Pond will be retrofitted with a CCR compliant liner in accordance with 40 CFR 257.102(k) and will operate as the sole CCR pond for management of Bottom Ash Transport Water. The North Pond will no longer be used to manage CCR-derived waste and will be retrofitted with a National Pollutant Discharge Elimination System (NPDES) liner to receive non-CCR LVW and stormwater runoff for discharge at a relocated Outfall 023.

The BAP will have an approximate surface area of 7 acres and volume capacity of approximately 74 acre-ft. The liner system will be composed of a geosynthetic clay over a graded and compacted native soil base in accordance with the CCR Rule permeability requirement and topped with a 60-mil textured HDPE geomembrane. The liner system will be protected by additional geotextile and natural gravel. For additional details, refer to the PTI application (Sargent & Lundy 2020b).

2.3 Historical Groundwater Monitoring

Prior to the retrofit, the BAP groundwater monitoring well network consisted of five monitoring wells: two upgradient monitor wells (MW-BAP-4 and MW-BAP-5) used to monitor background conditions and three downgradient monitor wells (MW-BAP-1, MW-BAP-2, and MW-BAP-3) used as compliance monitoring wells (Figure 2-1). The groundwater monitoring network utilized monitoring wells initially installed as part of a separate site-wide hydrogeologic investigation and was used to monitor groundwater quality in the uppermost aquifer at the Site. One of these wells (MW-BAP-3) will continue to be sampled, while the other four will be used only to collect water levels for potentiometric evaluations (Figure 2-2).

An initial eight baseline monitoring sample events were performed from June 2016 to August 2017, followed by semi-annual monitoring and statistical analysis to evaluate if CCR materials are impacting downgradient groundwater quality. The results of these have shown statistically significant increases (SSI) above background levels in groundwater downgradient of the historical BAP. However, concentrations did not reach statistically significant levels (SSL) in excess of groundwater protection standards (GWPS) that would require corrective action.

Although the former BAP is in assessment monitoring prior to the new groundwater monitoring system for the retrofitted BAP being placed into operation, the BAC will be "clean" closed (closure by removal) by removing all CCR materials at the time of closure and decontaminating all areas affected by releases (if any), in accordance with 40 CFR 257.102. The removal and decontamination activities will eliminate the potential that

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 4 of 16

contaminants from the historical BAP could result in a future exceedance of GWPS established pursuant to 40 CFR 257.95(h) (Sargent & Lundy 2020a, Sargent & Lundy 2020b).

As specified in 40 CFR 257.102(c), closure activities related to the historical BAP will be complete when all CCR has been removed and groundwater monitoring concentrations do not exceed GWPS. Furthermore, 40 CFR 257.104(a)(2) excludes the historical BAP from post-closure care criteria following removal of all CCR. Presuming that groundwater concentrations remain lower than GWPS, the historical BAP groundwater monitoring system will no longer need to be maintained following completion of closure activities. The groundwater monitoring system for the retrofitted BAP presented in this report will then constitute the entirety of required CCR groundwater monitoring at the BAP.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 5 of 16

3.0 Hydrogeologic Setting

3.1 Climate

The 2020 average monthly temperature and precipitation values for the Brilliant, Ohio area are presented in Table 3-1 (NOAA 2021). The climatological data was collected from the weather station located in New Cumberland, West Virginia (USC00466442), which is 28 miles north of Brilliant. Although the Steubenville, Ohio weather station (USC00338025) is closer to the Site, data at that station is not collected with the same consistency as the New Cumberland weather station. Climate differences between the two stations is not expected to be significant for the purposes of this report.

Surface water in the area surrounding the BAP will be diverted so it does not enter the BAP pond. Any precipitation falling on the pond will mix with other water in the BAP and be recirculated for bottom ash sluicing. There will be no discharge facilities from the BAP, except for a blowdown line to the Unit 3 FGD system to control the water level in the pond and to manage water quality (Sargent & Lundy 2020b).

3.2 Geologic Setting

The BAP is located immediately west of the Ohio River. Regional geology is dominated by sedimentary bedrock units overlain by unconsolidated deposits (typically sand and gravel) associated with the Ohio River Valley in an area of Ohio which was unglaciated during the most recent ice age.

The unconsolidated material beneath the BAP consists of three distinct lithologies, as illustrated on the cross-sections provided in Figures 3-1A to 3-1C:

- 1. Fill materials. These are approximately 10-20 feet in thickness.
- 2. An alluvium unit consisting of silt, clay, and sand deposited by the Ohio River floodwaters that is approximately 10-20 feet in thickness.
- 3. A unit of glacial outwash and alluvial deposits of sand and gravel that is approximately 5- 50 feet in thickness.

The unconsolidated materials extend to the bedrock surface approximately 50-75 feet below the BAP. Bedrock is shallower on the western side of the BAP (nearer the hillside) and deeper on the eastern side of the BAP (nearer the Ohio River). Bedrock consists of interbedded shale, sandstone, coal, and limestone of the Pennsylvanian Age Conemaugh Formation.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 6 of 16

3.3 Hydrogeologic Setting

The unconsolidated glacial outwash materials comprise the uppermost aquifer beneath the BAP. These materials are in hydraulic connection with overlying alluvium silts and clays, although the silts and clays do not have sufficient hydraulic conductivity to be considered aquifer materials. With a possible seasonal exception in the vicinity of MW-BAP-2, fill materials are fully in the vadose zone above the water table (Figure 3-1A).

3.3.1 Groundwater Use

According to an ODNR groundwater resources map, the region is largely characterized by sandstone, shale, and limestone units, all with well yields that generally do not exceed three gallons per minute (gpm). However, the area adjacent to the Ohio River, where the BAP is located, consists of thick, permeable sand and gravel deposits where yields in excess of 1000 gpm may be developed from horizontal collector wells. Wells in these valley fill areas supply much of the county through regional water systems. The ODNR groundwater resources map shows a well at the Cardinal facility, slightly north of the BAP, that is 88 feet deep in sand and gravel with a yield of 500 gpm (Walker 1990).

Based on water well records obtained from the ODNR online search tools (ODNR 2021), the nearest domestic water supply wells are located approximately one mile west of the BAP. The well records indicate well depths ranging from 30 to 110 ft below ground surface within shale and sandstone aquifers. Surface elevations at the wells are higher than those of the BAP. According to the Jefferson County Water and Sewer District, there are no surface water intakes supplying water to the town of Brilliant, Ohio. Brilliant's water source comes from two groundwater wells located near a water treatment plant approximately three miles northeast of the BAP (Geosyntec 2016b).

Water used at the Site is produced via four (4) on-site wells. These wells are located at least 1,700 feet northeast (upgradient) of the BAP. The Site production wells are screened within the sand and gravel aquifer and produce approximately 6,500 gallons per day (Ohio EPA 2003).

3.3.2 Surface Water Control

The Ohio River elevation adjacent to the Site is controlled by the Pike Island Dam, with a normal pool elevation of approximately 644.0 feet (USACE 2003). The National Weather Service (NWS) indicates that the flood stage for the Ohio River at Wellsburg, West Virginia, which is located approximately 3.7 miles upstream of the BAP, is at an elevation of 654.63 feet with a major flood stage at an elevation of 659.63 feet (NWS 2021).

The BAP is isolated from surface water flow by the pond embankments. The nearest tributary entering the Ohio River is Salt Run, located approximately 0.6 miles to the north

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 7 of 16

of the retrofitted BAP. Riddles Run and Blockhouse Run are located approximately 1.4 and 1.6 miles to the north, respectively. Groundwater in the vicinity flows towards and recharges the Ohio River. Seasonal fluctuations in the Ohio River pool stage near the BAP are expected to generally reflect seasonal precipitation values for Jefferson County, with the highest pool elevations generally in the spring and summer months.

3.3.3 Hydraulic Conductivity and Effective Porosity

Historical BAP groundwater monitoring activities (covering both the South Pond and North Pond areas) estimated hydraulic conductivity values ranging from 0.0001 cm/sec to 0.1 cm/sec (Geosyntec 2016a), with groundwater velocity calculations based upon hydraulic conductivity of 0.05 cm/sec and effective porosity of 0.36.

On March 19, 2021, slug tests were performed on three monitor wells installed in January 2021. Data and calculations are provided in Appendix A and summarized in Table 3-2.

Sand and gravel outwash materials taper out in the western area of the BAP (Figure 3-1C), and both the overlying silt/clay alluvium materials and the underlying sandstone are expected to have lower hydraulic conductivity than sand and gravel outwash materials. This is reflected in the hydraulic conductivity value for MW-BAP-1001, which is located west of the BAP and has conductivity values that are three orders of magnitude lower than other BAP wells located east of the BAP.

Slug tests were not performed on MW-BAP-3 or other monitor wells in the vicinity of the BAP. Bore logs (Appendix B) suggest that the alluvium silt and clay materials extend approximately 10-15 feet deeper at MW-BAP-3 than at MW-BAP-1002 and MW-BAP-1003 (Figure 3-1A). Materials underlying alluvium at MW-BAP-3 are mostly gravel, whereas they are mostly sand at MW-BAP-1002 and MW-BAP-1003. Based upon MW-BAP-3's location midway between MW-BAP-1002 and MW-BAP-1003, at a similar distance from the river, an average of hydraulic conductivity values at the latter two wells (as shown in Table 3-2) is considered to be a reasonable estimate of hydraulic conductivity.

3.3.4 Groundwater Flow Direction and Velocities

Potentiometric surface maps are provided as Figures 3-2A through 3-2D. Groundwater flow is from west to east across the retrofitted BAP. Based upon review of the potentiometric surface maps, geologic cross-sections, and bore logs, groundwater is most likely entering the unconsolidated aquifer west of MW-BAP-1001. This location is aligned with a stream valley located west of the highway that flows east towards the BAP. Infiltration from both the stream and bedrock strata to the west that are at a higher elevation than the BAP is possible.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 8 of 16

Due to the proximity of the Ohio River, the groundwater elevations taken at the BAP fluctuate between 643 and 646 ft. Due to the high permeability of the aquifer, minimal differences in groundwater elevation are observed at any given time. Total elevation changes across the BAP are typically around 0.1 to 0.3 feet over 800 feet, equating to hydraulic gradients of approximately 0.000125 to 0.000375.

Potentiometric surface maps show that groundwater at the BAP generally flows eastsoutheast, towards the Ohio River. In 2020, the average groundwater velocity at monitor wells in the historical BAP groundwater monitoring system (including both the North Pond and South Pond areas) was 26.7 feet per year (ft/year) during the spring and 16.7 ft/year during the fall (Geosyntec 2021). Based upon the hydraulic conductivity data included in Appendix A compared to estimates used in previous reports, calculated flow velocities may be up to an order of magnitude higher at wells east of the retrofitted BAP.

Although it is typically expected that groundwater flow will be perpendicular to a river, turning downstream as it nears the river itself, (as is generally the case at the BAP) localized exceptions have been observed. These exceptions most likely relate to the following factors:

- 1. The difference in groundwater elevations across the BAP are very small, meaning that groundwater flow directions are sensitive to any degree of imprecision in elevation surveys and depth to water measurements.
- 2. The silt and clay alluvium layer extends approximately 10 feet deeper at MW-BAP-5 than it does in other areas, resulting in less sand and gravel outwash. Because the silt and clay alluvium layer has lower permeability, groundwater is expected to preferentially flow around this area. Silt and clay materials at MW-BAP-5 are generally reported as being "stiffer" than at other monitor well locations, suggesting that their permeability may be particularly low near MW-BAP-5.
- 3. Fill materials lying overtop native alluvium obscure the presence of any historical stream channels, and fill materials are likely to have higher permeability than underlying silts and clays due to less compaction. In the area of MW-BAP-2, fill materials extend to a depth where they are likely to intercept the water table.
- 4. The aquifer is in close hydraulic communication with the Ohio River. Fluctuations in river stage are likely to result in changes to groundwater flow in the aquifer.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 9 of 16

4.0 Monitoring System Evaluation

CCR rules (40 CFR 257.53) define the term "uppermost aquifer" as "The geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility's property boundary". The term "aquifer" means "a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs." For purposes of this report, the glacial outwash materials form the uppermost aquifer beneath the BAP. The alluvium silt and clay material overlying the sand and gravel outwash materials is also saturated and in hydraulic connection with the outwash; however, usable quantities of groundwater would be obtained from the underlying sand and gravel materials that have much higher hydraulic conductivity and not the low-yielding silts and clays. The alluvial silt and clay material is, therefore, not part of the uppermost aquifer.

The following discussion provides demonstration that the groundwater monitoring system meets the requirements of 40 CFR 257.91.

4.1 Performance Standard

CCR Rule §257.91(a) specifies a performance standard that:

The owner or operator of a CCR unit must install a groundwater monitoring system that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer that:

- (1) Accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit [...]; and
- (2) Accurately represent the quality of groundwater passing the waste boundary of the CCR unit. The downgradient monitoring system must be installed at the waste boundary that ensures detection of groundwater contamination in the uppermost aquifer. All potential contaminant pathways must be monitored.

As part of the retrofit, a new BAP groundwater monitoring system has been established (Figure 2-2). In addition to previously existing MW-BAP-3, the system includes three new monitoring wells (MW-BAP-1001, MW-BAP-1002, and MW-BAP-1003) that were installed in January 2021.

Samples collected from MW-BAP-1001 will represent background groundwater that has not been affected by leakage from a CCR unit. MW-BAP-3, MW-BAP-1002, and MW-BAP-1003 are installed along the downgradient (east) boundary of the BAP and will serve as compliance wells to ensure detection of groundwater contamination in the uppermost

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 10 of 16

aquifer. Monitor wells from the former BAP monitoring system (MW-BAP-1, MW-BAP-2, MW-BAP-4, and MW-BAP-5) will continue to be measured for water levels to distinguish potentiometric surface, but not sampled.

4.2 Site Specific Technical Evaluation

CCR Rule §257.91(b) specifies that:

The number, spacing, and depths of monitoring systems shall be determined based upon site-specific technical information that must include thorough characterization of:

- (1) Aquifer thickness, groundwater flow rate, groundwater flow direction including seasonal and temporal fluctuations in groundwater flow; and
- (2) Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

The water table is separated from the BAP by at least five feet of fill materials and alluvial silt and clay. If a release from the BAP were to occur, it is anticipated that the released water would migrate vertically downward through the vadose zone fill materials and into the underlying alluvium where it would then reach saturated alluvial silt and clay materials. As noted earlier, these materials are not part of the uppermost aquifer due to their low hydraulic conductivity. The sands and gravels comprising the aquifer are encountered approximately 5 to 20 feet below the potentiometric surface. As shown on Figures 3-1A to 3-1C, monitor wells are screened near the top of aquifer.

Potentiometric surfaces presented on Figures 3-2A through 3-2D demonstrate that the location of background monitor well MW-BAP-1001 is consistently upgradient of the BAP. Hydraulic conductivity at MW-BAP-1001 is approximately three orders of magnitude less than other monitor wells in the system (Section 3.3.3), suggesting groundwater conditions at the monitor well may have greater influence from overlying alluvium and underlying bedrock materials than wells farther east. Slight geochemical differences in groundwater quality related to the environmental media could potentially increase the likelihood of falsely identifying an SSI during statistical evaluations of groundwater quality. However, due to the proximity of the BAP to the east, and areas that may have been affected by historical CCR operations farther to the northeast, background well placement in the slightly different lithology appears to be unavoidable. As shown on Figure 3-1C, MW-BAP-1001 is screened in the same outwash materials as compliance wells despite the differences in hydraulic conductivity.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 11 of 16

MW-BAP-3, MW-BAP-1002, and MW-BAP-1003 are installed along the downgradient (east) boundary of the BAP and will serve as compliance wells to ensure detection of groundwater contamination in the uppermost aquifer. As shown on Figures 3-2A through 3-2D, monitor wells MW-BAP-3 and MW-BAP-1003 are clearly downgradient of the BAP.

Due to safety concerns related to overhead electric lines during drilling, MW-BAP-1002 was installed farther to the north than initially planned. As presented in Section 3.3.4, there has been some uncertainty regarding groundwater flow directions in the northeast portion of the retrofitted BAP. Additionally, it is possible that retrofitting of the BAP and conversion of the North Pond to an NPDES pond could result in slight changes to the potentiometric surface in this area in the future.

At this time, the location of MW-BAP-1002 appears to be down-gradient of the BAP for at least portions of the year and, therefore, representative of the quality of groundwater passing the waste boundary of the CCR unit. The location of this down-gradient well will continue to be evaluated as additional data is obtained.

4.3 Number of Wells

CCR Rule §257.91(c) specifies that:

The groundwater monitoring system must include the minimum number of monitoring wells necessary to meet the performance standards specified in paragraph (a) of this section, based on the site-specific information specified in paragraph (b) of this section. The groundwater monitoring system must contain:

- (1) A minimum of one upgradient and three downgradient monitoring wells; and
- (2) Additional monitoring wells as necessary to accurately represent the quality of background groundwater that has not been affected by leaking from the CCR unit and the quality of groundwater passing the waste boundary of the CCR unit.

The groundwater monitoring system is comprised of 1 upgradient background well and 3 downgradient monitoring wells. As such, the minimum number of wells specified in the CCR Rule is met.

4.4 Multiple CCR Units

CCR Rule §257.91(d) allows multiple CCR units to be monitored in "a multiunit groundwater monitoring system instead of separate groundwater monitoring systems for each CCR unit." No other CCR units are in the immediate vicinity of the BAP, or

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 12 of 16

overlying the same uppermost aquifer as the BAP. As such, this provision of the CCR Rule is not applicable.

4.5 Monitoring Well System Construction

CCR Rule §257.91(e) requires that:

Monitoring wells must be cased in a manner that maintains the integrity of the monitoring well borehole. This casing must be screened or perforated and packed with gravel or sand, where necessary, to enable collection of groundwater samples. The annular space (i.e., the space between the borehole and well casing) above the sampling depth must be sealed to prevent contamination of samples and the groundwater.

- (1) The owner or operator of the CCR unit must document and include in the operating record the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling and analytical devices. The qualified professional engineer must be given access to this documentation when completing the groundwater monitoring system certification required under paragraph (f) of this section.
- (2) The monitoring wells, piezometers, and other measurement, sampling, and analytical devices must be operated and maintained so that they perform to the design specification throughout the life of the monitoring program.

4.5.1 Monitor Well Construction

Monitor well construction logs are provided in Appendix C. Wells are constructed of 2-inch diameter PVC casing and screen. Screens are surrounded with a sand pack, and the annular space above the sand pack is sealed with bentonite.

4.5.2 Groundwater Monitoring Program

In accordance with CCR rules, groundwater sampling will be performed semi-annually. Based upon flow direction and velocities observed historically at the BAP (Section 3.3.4), groundwater residence times at all monitor wells is considerably less than six months and this sampling frequency will ensure physical independence.

Groundwater elevations will be measured in each well immediately prior to purging, each time groundwater is sampled. To minimize the effects of temporal variation and allow determination of the rate and direction of groundwater flow, water levels at all wells in

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 13 of 16

the BAP groundwater monitoring system must be measured on the same day in as short a time period as is practical, even if sampling is to be conducted over multiple days.

The monitoring wells will be sampled using low flow sampling techniques based on Chapter 10 of OEPA's Technical Guidance Manual (TGM) for Hydrogeologic Investigations and Ground Water Monitoring (Ohio EPA 2020) and the Facility Groundwater Monitoring Program Plan, approved by Ohio EPA Division of Materials & Waste Management (Cardinal 2020). The monitoring well will be purged using a submersible pump. A dedicated length of disposal polyethylene tubing will be used to purge groundwater at each location, and all down-hole equipment will be decontaminated prior to use at a new sampling location.

Water will be pumped through an enclosed, flow-through cell fitted with a multiparameter groundwater meter. Measurements of temperature, pH, specific conductance, turbidity, dissolved oxygen (DO), and oxidation reduction potential (ORP) will be measured periodically during purging. Groundwater will be purged until three consecutive readings are within the following limits for a minimum of three of the following stabilization parameters:

- Turbidity has stabilized to less than 10 nephelometric turbidity units (NTU) or $\pm 10\%$ if greater than 10 NTU;
- Temperature has stabilized to ±0.5 degrees Celsius (°C);
- Oxidation-reduction potential (ORP) has stabilized to ±20 millivolts (mV);
- Dissolved oxygen (DO) has stabilized to 10% or ± 0.2 mg/L;
- pH has stabilized to ± 0.2 standard units (SU); and
- Specific conductance has stabilized to $\pm 3\%$.

Groundwater levels will be monitored during purging to confirm that drawdown is minimized. Groundwater samples will be collected following stabilization of field parameters. If stabilization is not achieved after removal of 3 well volumes, then a sample can be collected at the discretion of the field crew. Attempts should be made to avoid purging to dryness. If purging to dryness is unavoidable or inadvertent, then samples should be taken when there is a sufficient amount of water to collect a sample that best represents the ground water quality. Ideally, sampling after purging to dryness will take place within 24 hours.

Groundwater samples will be collected unfiltered, in pre-preserved sampling containers provided by the laboratory. In addition to groundwater samples discussed above, quality control blanks and field duplicates will be collected to verify that analytical data is representative of site conditions according to the Facility Groundwater Monitoring Program Plan (Cardinal 2020). Groundwater samples will be transported to a qualified laboratory in an ice-cooled chest under chain of custody.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 14 of 16

Laboratory analysis will be conducted in accordance with 40 CFR 257.93 which includes, but is not limited to, analytical methods that accurately measure hazardous constituents listed in either Appendix III or IV of 40 CFR 257. This is further detailed in the Statistical Analysis Plan (Geosyntec 2020).

Statistical evaluation of groundwater analytical results will be performed in accordance with the Site's 2020 Statistical Analysis Plan (Geosyntec 2020) or subsequent revisions.

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 15 of 16

5.0 Professional Engineer Certification

The undersigned Professional Engineer registered in the State of Ohio is familiar with the requirements of 40 CFR part 257, subpart D and has visited and examined the facility. The undersigned Registered Engineer attests that the BAP Groundwater Monitoring System has been prepared in accordance with good engineering practice, including the design and construction to meet the requirements of 257.91, for the facility to the best of his knowledge. The minimum number of wells specified in 257.91(c)(1) has been met, as documented in Section 4.0 of this report.

This certification in no way relives the owner or operator of the facility of his duty to fully implement this Groundwater Monitoring System in accordance with the requirements of 40 CFR 257 subpart D.

Nick M. Petruzzi, PE, CPG Principal Engineer Registration No. E-73052 (Ohio) Cox-Colvin & Associates, Inc.

22 Date

Groundwater Monitoring System for Retrofitted BAP Cardinal Operating Company – Cardinal Power Plant January 3, 2022 Page 16 of 16

6.0 References

- Cardinal. 2020. Groundwater Monitoring Program Plan Revision 1.1; Cardinal Plant; Brilliant, Ohio. Columbus, Ohio: Prepared for Cardinal Operating Company by American Electric Power (AEP) and Revised by Buckeye Power, Inc.
- Geosyntec. 2021. "2020 Annual Groundwater Montioring Report (Rev. 1) Federal CCR Rule Cardinal Plant - Bottom Ash Pond." Brilliant, Ohio.
- Geosyntec. 2016a. Groundwater Monitoring Network Evaluation Cardinal Site Bottom Ash Pond. Brilliant, Ohio: Geosyntec Consultants.
- Geosyntec. 2016b. Location Restriction Evaluation; Cardinal Bottom Ash Pond, Brilliant, Ohio (Project CHE8126L). Oak Brook, Illinois: Geosyntec Consultants.
- Geosyntec. 2020. Statistical Analyis Plan, Cardinal Power Plant, Brilliant, Ohio (CHA8468), August 2020, Revision 1. Geosyntec Consultants.
- NOAA. 2021. National Oceanic and Atmospheric Administration Annual Climatological Summary, Station: Steubenville, OH US GHCND: USC003380025.
- NWS. 2021. Advanced Hydrologic Prediction Service. National Weather Service. https://water.weather.gov/ahps2/hydrograph.php?gage=WELW2&wfo=pbz.
- ODNR. 2021. Water Well Log Interactive Map. Accessed October 21, 2021. https://gis.ohiodnr.gov/MapViewer/?config=waterwells.
- Ohio EPA. 2003. Drinking Water Source Assessment for Cardinal Operating Co. 1 & 2 (PWS ID # 4130912); August 2003 (revised). Ohio EPA. http://wwwapp.epa.ohio.gov/gis/swpa/OH4130912.pdf.
- Ohio EPA. 2020. Technical Guidance Manual for Hydrogeologic Investigations and Ground Water Monitoring. Ohio Environmental Protection Agency.
- Sargent & Lundy. 2020a. "Cardinal Power Plant Bottom Ash Pond Complex; Amendment of Existing Closure Plan; Revision 0, October 19, 2020 (Project No. 13770-005)."
- Sargent & Lundy. 2020b. "Cardinal Power Plant Permit to Install Application Bottom Ash South Pond CCR Retrofit."
- USACE. 2003. "Ohio River Navigation Charts Pittsburgh, Pennsylvania to New Martinsville, West Virginia." U.S. Army Corps of Engineers, January.
- Walker, Alfred C. 1990. *Ground-Water Resources of Jefferson County*. Columbus: Ohio Department of Natural Resources (ODNR).
- Winston, R.B. 2020. "U.S. Geological Survey Software Release." *GW_Chart version 1.30:*. June 26.

K:\CCA\PROJECTS\Buckeye_Power\Cardinal\BAP\CCR Groundwater Monitoring Network Plan\2022 BAP Retrofit Proposed GW Network\GW Monitoring System Report.docx

Figures

DATE: 10/28/20

VG NAME: Sitemap 37.

Geologic Cross-Section C - C', Cardinal Power Plant BAP, Brilliant, Ohio

Tables

Month	Average Temperature (°F)	Precipitation (Inches)					
January	34.7	3.67					
February	33.6	3.94					
March	43.9	7.24					
April	46.6	4.79					
May	57.5	3.42					
June	68.3	2.66					
July	76.4	3.87					
August	73.1	3.48					
September	64.6	2.66					
October	54.7	3.29					
November	46.6	2.69					
December	34	3.59					

Table 3-1. 2020 NOAA Climatological Summary for New Cumberland, West Virginia

K:\CCA\PROJECTS\Buckeye_Power\Cardinal\BAP\CCR Groundwater Monitoring Network Plan\2021 BAP Retrofit Proposed GW Network\Tables\[Table 3-1 NOAA Climatological Summary.xlsx]Table

	Hydraulic								
	Conductivity								
	ft/day	cm/sec							
MW-BAP-1001	0.6606	0.000233							
MW-BAP-1002	836.4	0.295063							
MW-BAP-1003	797.6	0.281376							
MW-BAP-3 *	817	0.288219							

Table 3-2. Hydraulic Conductivity, Retrofitted BAP, Cardinal Power Plant,Brilliant, Ohio

K:CCA'PROJECTS\Buckeye_Power\Cardinal\BAP\CCR Groundwater Monitoring Network Plan\2022 BAP Retrofit Proposed GW Network\Tables\Tables\Tables\4 Jables\4 Jabl

* MW-BAP-3 hydraulic conductivity is estimated by averaging values at MW-BAP-1002 and MW-BAP-1003

Appendix A

Slug Test Results

Appendix B

Boring Logs

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Blocked-in "SAMPLES" column indicates sample was attempted and recovered within this depth interval.

- Sample was attempted within this interval but not recovered.
- 2/5/9 The number of blows required for each 6-inch increment of penetration of a "Standard" 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer freely falling 30 inches. Addition of one of the following symbols indicates the use of a split-barrel other than the 2" O.D. sampler:

- 2¹/₂"O.D. split-barrel sampler

- 3" O.D. split-barrel sampler

- P Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-2" Number of blows (50) to drive a split-barrel sampler a certain number of inches (2), other than the normal 6-inch increment.
- S/D Split-barrel sampler (S) advanced by weight of drill rods (D),
- S/H Split-barrel sampler (S) advanced by combined weight of rods and drive hammer (H).

SOIL DESCRIPTIONS

All soils have been classified basically in accordance with the Unified Soil Classification System, but this system has been augmented by the use of special adjectives to designate the approximate percentages of minor components as follows:

<u>Adjective</u>	Percent by Weight
trace	1 to 10
little	11 to 20
some	21 to 35
"and"	36 to 50

The following terms are used to describe density and consistency of soils:

<u>Term (Granular Soils)</u>	<u>Blows per foot</u>
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

Sampled Monitor Wells

LOG OF BORING NO. MW-BAP-3 Page 1 of 3 **BOTTOM ASH POND MONITORING WELL INSTALLATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 819,111, E. 2,513,519 11/11/15 - 11/12/15 669.9 DATE: ELEVATION: 55.0' DRILLING METHOD: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: SAMPLER(S): 2" O.D. Split-barrel Sampler SAMPLE NUMBER SAMPLE SAMPLE REC-% NATURAL CONSISTENCY INDEX SAMPLE DEPTH, FEET EFFORT TEST ELEV NATURAL MOISTURE CONTENT N 60 DESCRIPTION RESULTS T.TMT OUID LIMIT 0 **AGGREGATE - 12 INCHES** 10 20 30 40 668.9 FILL: Medium-dense to dense gray and brown 2028 87 fine to coarse gravel, some to "and" fine to coarse H=3.5 1 12 sand, little to some silt or silty clay (variers), 10 10 contains pockets of fine to coarse sand, dry. 39 80 2 H=4.0 13 18 10 67 43 3 14 5 20 010 NEW DEFAULT BORING LOG-W/ N60 44 100 4 '13 5 25 67 11 661.4 9 FILL: Hard gray and brown silty clay, some fine 29 100 H=4.5+ 6 10 to coarse and, little fine to coarse gravel, damp. 659.9 13 10 -FILL: Very-dense fine to coarse black and gray 71 7 67 sand, some fine to coarse gravel, damp. 658.4 30 FILL: Very-stiff brown silty clay, some to "and" 8 19 100 H=3.5 fine to coarse sand, some fine to coarse gravel, 6 q damp. 9 35 87 H=3.5-4.0 14 655.4 14 FILL: Loose to medium-dense brown fine to 15 10 14 80 coarse gravel, some to "and" fine to coarse sand, 5 6 some silty clay, damp to moist. 14 11 80 H=4.5 - Contains zones of hard silty clay at 16.0'. 5 13 12 93 6 8 67 13 20^{-} 649.4 Medium-stiff to stiff brown clayey silt, "and" fine 9 14 53 to coarse sand, some fine to coarse gravel, wet. H=1.0-2.0 647.3 15A 6 100 H=0.5 Loose gray fine to medium sand, trace coarse 15B sand, trace fine gravel, little silt, wet.

JOB	7217-	15-007	B				-CONTINUED-						ATV 550-2
WATER NOTE: <u>Inside Well</u> DATE: <u>12/11/15</u>					Well //15		Q - Uncon Comp See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relative	ometer Ty Wt (g ve Dens	(tsf) pcf) (%)	Last Cal Dril	ibration Rig Nu	Date : mber :	8/2/2013 S&ME
WA	WATER LEVEL: $\overline{4}$ 28.2 $\overline{4}$						SYMBOLS USED TO INDICATE TEST F	RESULTS]	Drill Rod	Energy	Ratio :	0.75
	20			-/			The to medium sand, contains sitt seams, the						
		18		¹ / ₂ ,	8	100	fine to medium contains silt scome fine						H=1.0-1.5
							slithly organic to organic clayer silt little to some						
		1¥-					Soft to stiff dark-brown mottled with dark-gray		:::			: : : :	
641.)			511									
				- SH									
		17		1.	0	100	WOL.						
				1,			wet						
							Very-loose gray silt little fine to medium sand						
644.	1 ²³								1.1.1	1 1 1 1 1	1 1 1 1 1		

5

3

16

100

Page 2 of 3LOG OF BORING NO. MW-BAP-3
BOTTOM ASH POND MONITORING WELL INSTALLATION
CARDINAL PLANT, BRILLIANT, OH

LOCATION: N. 819,111, E. 2,513,519 ELEVATION: 669.9 DATE: 11/11/15 - 11/12/15													/12/15
DRILLING METHOD: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: 55.0' Complexity 2" O D G I'' I I I I I I I I I I I I I I I I I												5.0'	
SAMPLER(S): 2" U.D. Split-barrel Sampler													1
ELEV.	DEPTH, FEET	SAMPLE NUMBER	SAMPLE	SAMPLE EFFORT	N 60	SAMPLE REC-%	DESCRIPTION	NATURA NAT	DEX NTENT LIMIT	TEST RESULTS			
	- 30-						sand seams and roots, wet. Soft to stiff dark-brown mottled with dark-gray	10	20	3) 4	0	-
		19		¹ / ₂ / ₂ 2	5	100	slithly organic to organic clayey silt, little to some fine to medium sand, contains silt seams, fine sand seams and roots, wet.						
		20		SӉ 2	4	100							-
634.4	- 35-			-/ 1									•
		21		SH 2∕_1	4	100	Soft to medium-stiff dark-brown mottled with gray slightly organic to organic clayey silt, some to "and" fine to medium sand, wet.						-
				sң									
629.4	- 40-	22		^{′ 1} / 2	4	100	Soft to medium-stiff gray mottled with brown						-
		23		Sम_2/1	4	100	silty clay, trace to some fine to coarse sand, slightly organic, contains fine sand seams, wet.						
		24		sң	14	100							-
624.9	- 45-	- ·		^{†/} 7			Medium-dense to very-dense brown fine to coarse gravel, some to "and" fine to coarse sand, trace to						-
		25		/11/ 17	35	80	Ittle silt, wet.Contains zones of fine to coarse sand at 49.0'.						
		26		²² / _{35/25}	75	53							G
	- 50-			25									•
				21,									-
614.9	- 55-	27		[/] 8 _{/8}	20	33							- - -
							- Encountered seepage at 16.0'.						
							 Encountered water at 20.5'. Borehole converted to monitoring well upon completion - See separate well completion 						
	60-						diagram. - Datum: Ohio State Plane South. NAD						
WATI WAT	ER LE FER N D	VEL: OTE: ATE:	<u>V</u>	28. Inside 12/11	2 Well /15		G - Gradation Q - Uncon Comp T - Triax Comp C - Consol. Curves D - Relativ	xESULTS ometer (tsf ry Wt (pcf) ve Dens (%)	Drill	l Rod l st Cali Drill	Energy l bration Rig Nu	Ratio : Date : mber :	0.75 8/2/2013 S&ME

-CONTINUED-

	Page 3	of 3	B	ОТТ	ОM] I ASH CA	LOG OF BORING NO. MW I POND MONITORING WI ARDINAL PLANT, BRILLI	7-BAP-3 ELL INSTALLA ANT, OH	ATION						58	ME
	LOCATI DRILLIN	ON: <u>N</u> IG MET	N. 819 HOD:	9,111	l, E. 1-1/4	2,513 4'' I.E	3,519 D. Hollow-stem Auger	ELEVATION:	669.9	. (DA	ATE: PLE	1 TION	1/11/1 DEPTH:	5 - 11 	1/12/15 55.0'
	SAMPLE	ER(S):		2	2" C).D. S	plit-barrel Sampler									
	ELEV. DEPTH,	FEET AMPLE UMBER	AMPLE	EFORT	N 60	AMPLE REC-%	DESCRIPT	ION		NAT	URAL NATU	CO RAL	NSIST MOIS	ENCY IN TURE CO	IDEX NTENT	TEST RESULTS
	6			-		S	27/NAVD 29 (Plant Grid).			- PLA	0 0	20		$\frac{-110011}{30}$	$\frac{10}{10}$	
																_
-W/ N60	- 6	5-														_
DRING LOG												· · · · · · · · · · · · · · · · · · ·				-
EFAULT B(_
010 NEW D	- 7	0-														-
7																_
	-7	5-										· · · · · · · · · · · · · · · · · · ·				-
										· · · · · · · · · · · · · · · · · · ·						_
	- 8	0-														-
												· · · · · · · · · · · · · · · · · · ·				_
																-
	- 8	5-														-
																-
																-
	UATER I WATER	0 LEVEL: NOTE: DATE:		28.2 nside \ 12/11/	2 Well /15	⊥ 型	G - Gradation Q - Uncon Comp T - Triax Comp	ED TO INDICATE T See H - Pe Separate W - Un Curves D - Re	EST RESU netromete it Dry Wi lative De	LTS er (t (p ens	tsf) cf) (%)	Dri L:	ll Rod ast Ca Dri	Energy libration	Ratio : 1 Date : 1 mber :	0.75 8/2/2013 S&ME

PROJECT: CARDINAL BOTTOM ASH POND WELL INSTALLATION

LOCATION: BRILLIANT, OH

GROUNDWATER DATA											
FIRST ENCOUNTERED NR											
DEPTH HOUR DATE ELAPSED TIME											

METHOD OF ADVANCING BOREHOLE											
d	FROM	52.3 '									

BORING MW-BAP-1001 G.S. ELEV. 670.31 FILE 415532 SHEET 1 OF 2

DRILLER	HAD	
HELPER		
INSPECTOR	K. FOWLER	
DATE STARTED	01/06/2021	
DATE COMPLETED	01/06/2021	

DEPTH		A			В		C		DESCRIPTION		Wn	REMARKS
5_		S-1	2	2	4	6		7.0	<u>Sandy Fill</u> , hydroexcavated from 0-5 feet	663.3		
							Ŵ					
		S-2	4	8	6	6						
10												
		S-3	3	9	9	6			Light brown, brown and gray <u>Silty Clay</u> , stiff to very	,		
									stiff, dry			
		S-4	7	4	5	7	W					
							W					
15_		S-5	2	4	6	4		15.	0	655.3		
								, k				
		S-6	2	3	3	3						
									Brown and gray <u>Sand and Rock Fragments</u> , loose to medium dense, wet	o		
		S-7	40	22	8	6						
20_								ů.				
		S-8	4	7	4	3		21.	0	649.3		
		S-9	3	3	5	8	-W					
- 1924							W					
25 _		S-10	2	6	4	6	-111					
	╫	S-11	2	6	4	6	-111		Brown and light brown <u>Clayey Silt</u> , some rock fragments, soft to stiff, damp to moist			
-	-											
2000	+	S-12	1	2	2	5	-111				23.6	mottled from 29 feet to
30_	-+						W					31 feet with some black organics
		S-13	1	2	2	2	-111					
- You									_			
		SH-14						33.		637.3	23.8	
2 .	+	0.45	4	0	~	4			ыаск and greenish gray <u>Lean Clay</u> , soft to medium stiff, dry, (CL)	1		
		5-15	1	2	2	4				DRN.		SAP
										CKD.		SDM

PROJECT: CARDINAL BOTTOM ASH POND WELL INSTALLATION

LOCATION: BRILLIANT, OH

MW-BAP-1001
670.31
415532
2 OF 2

PROJECT: CARDINAL BOTTOM ASH POND WELL INSTALLATION

LOCATION: BRILLIANT, OH

GROUNDWATER DATA											
FIRST ENCOUNTERED NR											
DEPTH HOUR DATE ELAPSED TIME											

N	METHOD OF ADVANCING BOREHOLE												
d	FROM	0.0 '	54.0 '										

BORING MW-BAP-1002 G.S. ELEV. 670.06 FILE 415532 SHEET 1 OF 2

DRILLER	HAD	
HELPER		
INSPECTOR	K. FOWLER	
DATE STARTED	01/05/2021	
DATE COMPLETED	01/06/2021	

DEPTH	1	А			В			С		DESCRIPTION	Wn	REMARKS
5									5.0	Sandy Fill, hydroexcavated from 0-5 feet	1	
							\otimes	\bigotimes			-	
	_	S-1	2	7	11	11				Brown and gray <u>Sand</u> , with clay and gravel, medium dense, dry (FILL)		
		S-2	4	7	7	Q	\otimes	\bigotimes	8	661	1	
10	-++-	0-2	4	1		3		×××	<u>x 9.0</u>	001	<u>-</u>	
10		S-3	5	20	14	9	_					
170												
ð T	+	S-4	6	9	9	13	_					
15_	-	S-5	9	9	8	9						orange mottling from 15
												feet to 19 feet
		S-6	5	3	3	4						
5												
		S-7	1	1	3	3						organics prosent from 10
20												feet to 21 feet. slight
		S-8	1	1	3	1				Orange <u>Clavey Silt</u> , some rock fragments, very soft to		odor from 19 feet to 21 feet.
										very stiff, dry to wet (ML)		
		S-9	2	2	2	2					07.5	
											27.5	
25		SH-10										
		S-11	1	1	2	3						
											26.3	
2		SH-12										
30 ³												
		S-13	1	1	1	1						
											42.5	
		SH-14							33	0 637	1	
								· · · ·		Grav and brown Sand very loose to dense moist to	-	
35		S-15	WΗ	ı w⊢	I WH	wн			•	wet (SW)		
		0					<u></u>	• • •	•	DRN.		SAP
										CKD.		SDM

PROJECT: CARDINAL BOTTOM ASH POND WELL INSTALLATION LOCATION: BRILLIANT, OH

BORING MW-BAP-1002 G.S. ELEV. 670.06 FILE 415532 SHEET 2 OF 2

	DEPTH	ł	A			В		С	DESCRIPTION	Wn	REMARKS
	-										
	-		S-16	1	1	1	1				
	-		C 17	1	3	5	5				
	-		3-17		5	5	5				
	40										
			S-18	1	2	1	2				
	-										
	-		S-19	5	8	11	13				
	_										
	45								Grav and brown Sand very loose to dense moist to		
	···	-							wet (SW)		
	-	_									
	_										
	-		1								
	-										
	50		S-20	2	5	8	10				Coarse gravel from 49.5
											Teet to 50 Teet
-	-										
/8/2	-		S-21	11	9	10	8				Monitoring well installed
0T 3											at boring completion; see
5			5-22	7	12	10	Q				monitoring well
Ē			0-22	-	12	10	5				Installation log
AU	55							• • • • • • • • •	55.0 615.1		
E BI	-								END OF BORING AT 55'		
SIT											
GΡ	-										
ON.	-										
ATIC	-										
ALL	60										
-SNI											
H	-										
M	-										
NO											
HP	-										
M AS	-	_									
IOL	65										
BOI											
AAL	-										
RDII	-										
Q	-										
532											
415	-										
900	/0 _	+									
J D	-										
JRIN											
ΤBC	-										
TES	-	_									
STS	_										
JEC	75										
PRC		1									
×	-										
zΓ			I	I				1		1	

Ĩ

PROJECT: CARDINAL BOTTOM ASH POND WELL INSTALLATION

LOCATION: BRILLIANT, OH

GROUNDWATER DATA												
FIRST ENCOUNTERED NR												
DEPTH HOUR DATE ELAPSED TIME												

METHOD OF ADVANCING BOREHOLE													
d	FROM	FROM 0.0 ' TO											

BORING MW-BAP-1003 G.S. ELEV. 670.08 FILE 415532 SHEET 1 OF 2

DRILLER	HAD	
HELPER		
INSPECTOR	K. FOWLER	
DATE STARTED	01/04/2021	
DATE COMPLETED	01/05/2021	

DEP	PTΗ		А			В		С		DESCRIPTION		Wn	REMARKS
5									5.0	<u>Sandy Fill</u> , hydroexcavated from 0-5 feet			
	_		S-1	4	3	2	4		7.0	Brown <u>Clay</u> , and rock fragments, medium stiff (FILL)		
			S-2	2	2	3	5			Brown and gray <u>Clayey Silt</u> , medium stiff to very stit dry	ff,		
10) — 	-	S-3	7	6	8	11		11.0				
	_		S-4	8	50/	0.5							
אברו א ^{מע} 15			S-5	7	7	5	6		15.0	Brown <u>Shale Rock Fragments</u> with clay, stiff to hard dry	d,		
PJ SIIE BLA	_		S-6	1	1	5	5			Gray and brown <u>Silty Clay</u> , medium stiff to stiff, dry			
ALION.6	_		S-7	1	3	3	4		19.0				wood organics from 19
20 III)	-	S-8	1	2	2	5						feet to 21 feet
			SH-9						-			25.1	
25	5		S-10	1	4	4	7			Dark gray <u>Silt</u> , with wood organics, low plasticity, soft to stiff, dry to moist (ML/OL)		28.9	
			<u>SH-11</u>									30.9	
	_		S-12	3	4	5	6						
30 20 29	' 		SH-13						31.0			43.6	
			<u>S-14</u>	WF	I WH	I WF	I WH			Gray and light brown <u>Lean Clay</u> , very soft, damp to moist			
35	5		S-15	WF	I WH	I WH	H WH	<u> ////////////////////////////////////</u>	35.0)	יאסס		CAD
											CKD.		SDM

PROJECT: CARDINAL BOTTOM ASH POND WELL INSTALLATION LOCATION: BRILLIANT, OH

BORING MW-BAP-1003 G.S. ELEV. 670.08 FILE 415532 SHEET 2 OF 2

AD S-10 1 2 2 4 40 - S-17 9 12 8 9 41 - S-18 10 17 16 20 - S-18 10 17 16 20 - - 45 - S-20 8 12 15 18 - - 60 - S-21 - - - - - - - 60 - S-22 10 11 13 10 - <th></th> <th>DEPTH</th> <th></th> <th>A</th> <th></th> <th></th> <th>В</th> <th></th> <th>С</th> <th>DESCRIPTION</th> <th>Wn</th> <th>REMARKS</th>		DEPTH		A			В		С	DESCRIPTION	Wn	REMARKS
40 -												
1 3:18 1 2 2 4 40 - 3:17 9 12 8 9 40 - 3:18 10 17 16 20 45 - 3:20 8 12 15 16 12 20 45 - 3:20 8 12 15 16 12 20 45 - 3:21 - - 3:22 10 16 19 20 50 - 3:23 10 16 19 20 -		-										
40 - 8-17 9 12 8 9 40 - S-18 10 17 16 20 45 - S-20 8 12 15 16 45 - S-20 8 12 15 16 50 - S-22 10 16 19 20 50 - S-22 10 16 15 20 55 - S-22 10 16 15 20 55 - S-22 10 16 15 20 55 - S-22 10 16 15 20 60 - - - - - - 60 - - - - - - - 61 - - - - - - - - 70 - - - - - - - - 70 - - -		-		S-16	1	2	2	4	-			
40 - S-17 9 12 8 9 40 - S-18 10 17 16 20 45 - S-20 8 12 15 16 45 - S-20 8 12 15 16 - S-22 10 11 13 10 0 50 - S-22 10 16 19 20 - S-22 10 16 19 20 - S-22 10 16 19 20 - S-22 9 14 16 16 55.0 - S-25 9 14 16 16 55.0 - - - - - - - 65 - - - - - - 65 - - - - - - 70 - - - - - - 70 - - <td></td> <td>_</td> <td></td>		_										
40 5:18 10 17 16 20 45 5:18 10 17 16 20 45 5:20 8 12 15 18 50 5:22 10 11 13 10 50 5:22 10 16 19 20 55 5:23 10 16 19 20 55 5:24 10 16 19 20 55 5:23 9 14 16 16 56 5:24 10 16 19 20 56 5:23 9 14 16 16 60 - - - - - 60 - - - - - - 61 - - - - - - - 70 - - - - - - - - 75 - - - - - - - -				S-17	9	12	8	9				
30 - S-18 10 17 16 20 45 - S-20 8 12 15 12 20 45 - S-20 8 12 15 18 0 15 12 20 - - S-20 8 12 15 16 19 20 16 19 20 - - S-22 10 16 19 20 16 19 20 16 19 20 10 16 19 20 10 16 19 20 10 16 15 20 10 16 19 20 10 16 15 20 10 16 10 20 10 16 10		-			0		<u> </u>					
45 - S-18 10 17 16 20 45 - S-20 8 12 15 16 - - S-21 - - - - 50 - S-22 10 11 13 10 - 50 - S-22 10 16 19 20 - - 50 - S-23 10 16 19 20 -		40	+1									
S-10 10 15 12 20 45 S-20 8 12 15 16 9 S-22 10 11 13 10 50 S-22 10 16 19 20 55 S-22 9 14 16 15 20 55 S-25 9 14 16 16 55.0 60 - - - - - - 60 - - - - - - 70 - - - - - - 70 - - - - - - 75 - - - - - - -		_		S-18	10	17	16	20				
1 3-10 10 15 12 20 4 - 3-20 8 12 15 16 - 3-21 - - - - - 50 - 3-22 10 11 13 10 50 - 3-22 10 16 19 20 55 - 3-25 9 14 16 16 55.0 55 - 3-25 9 14 16 16 55.0 65 - - - - - - - 60 - - - - - - - 60 - - - - - - - 70 - - - - - - - - 71 - - - - - - - - 71 - - - - - - - - - <												
1 10 10 12 20 45 -<		-		S 10	10	15	10	20				
45 -		-		5-19	10	15	12	20				
45 45 520 8 12 15 16 19 20 50 522 10 16 19 20 35 35 35 35 35 35 35 35 35 35 35 10 16 19 20 35 35 55 10 16 16 10 35 35 35 55 10 16 16 10 10 16 10 10 16 16 10 <		-										
30 522 10 11 13 10 50 523 10 16 19 20 55 522 9 14 16 16 50 523 9 14 16 16 55 525 9 14 16 16 60 65 60 65 60 70 70 70 70 70 75 76 70 70 70 76 70 70 70		45		S-20	8	12	15	16		Light brown <u>Sand</u> , fine to coarse grained, loose to		
32 10 16 19 20 50 - - - - 52 10 16 19 20 55 - - - 55 - - - 55 - - - 66 - - - 70 - - - 71 - - - 72 - - - 73 - - -			П							dense, moist to wet		
50 - S-22 10 11 13 10 50 - S-22 10 16 19 20 - S-22 10 16 19 20 - S-22 10 16 15 20 - S-25 9 14 16 16 55 - S-25 9 14 16 16 60 - - - - - - - 60 - - - - - - - - 65 -		-	-11									
1 S.22 10 11 13 10 50 S.22 10 16 19 20 65 S.22 9 14 16 16 60 S.22 9 14 16 16 66 S.22 10 14 16 16 70 S.22 10 14 15 16 70 S.22 10 14 16 16 70 S.22 10 14 16 16		-	++	S-21								
50 4 3-22 10 16 19 20 56 - <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_										
50 - 0 1				S-22	10	11	13	10				
50 -		-		0 22			10	10				
1		50	-+1									
1 S-24 10 16 15 20 Monitoring well installed at boring completion, see monitoring well installed installation log 55 - S-25 9 14 16 16 55,0 - - S-26 9 14 16 16 55,0 - - S-25 9 14 16 16 55,0 - - - - - - - - 60 - - - - - - - 66 - - - - - - - 70 - - - - - - - 70 - - - - - - - 70 - - - - - - - 71 - - - - - - - 71 - - - - - - - 72 - -<		_		S-23	10	16	19	20				
1 S-24 10 16 15 20 55 1 S-25 9 14 18 16 55.0 1 S-26 9 14 18 16 55.0 Installed 60 - - - - - - - - 60 - <td< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5											
1000000000000000000000000000000000000	3/8	-		0.04	10	40	4 -					
55 - </td <td>5DT</td> <td>-</td> <td>++-</td> <td>S-24</td> <td>10</td> <td>16</td> <td>15</td> <td>20</td> <td></td> <td></td> <td></td> <td>Monitoring well installed</td>	5DT	-	++-	S-24	10	16	15	20				Monitoring well installed
55 1 S-25 9 14 16 <td< td=""><td>Ľ.</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>at boring completion; see</td></td<>	Ľ.	_										at boring completion; see
THE	UVE	55		S-25	9	14	16	16		55.0		installation log
END OF BORING AT 55'	BLA										1	0
	Ш	-	_							END OF BORING AT 55'		
	S	-	_									
	Z.GF											
	<u>p</u>	_										
	TLA	-	-									
	STA	60	4									
	Ľ ⊢	_										
	NEL	_										
	g	-	-									
	PO	-	_									
	ASF	_										
	NO	65										
	Fo		+									
	AL B	-	_									
	ND	_										
	CAR											
	32_(-	1									
	155	-	_									
	Q 4	70										
	2											
	RIN	-	1									
	BO	-	_									
	EST	_										
	ΓS Τ											
	С	-	1									
	RO	/5	+									
	≥	_										
	۳											

Water Level Only Monitor Wells

LOG OF BORING NO. MW-BAP-1 Page 1 of 2 BOTTOM ASH POND MONITORING WELL INSTALLATION CARDINAL PLANT, BRILLIANT, OH

LOCA DRIL	ATION LING	N: <u>N</u> METH	. 820,30 IOD:	<u>5, E.</u> 4-1/4	2,513 4'' I.I	3,927 ELEVATION: <u>66</u> D. Hollow-stem Auger	9.8	DAT COMPI	E: <u>1</u> JETION	1 2/4/15 DEPTH:	- 12/	/10/15 52.0'
SAM	PLER	(S):		2" C).D. S	plit-barrel Sampler						
ELEV.	DEPTH, FEET	SAMPLE NUMBER	SAMPLE SAMPLE EFFORT	N 60	SAMPLE REC-%	DESCRIPTION	NA PL	ASTIC I	CONSIST L MOIST	ENCY IN FURE COI -X -LIQUID	DEX NTENT LIMIT	TEST RESULTS
667.0		1	47 _{/34/26}	75	100	AGGREGATE - 34 INCHES				30 4	0	-
665.3		2	⁴ / _{21/30}	64	100	FILL: Hard brown silty clay, some fine to coarse sand, some fine to coarse gravel, cobbles, moist.						H=3.0
	- 5 -	3 - 4	⁷ ⁶ /8 7 ⁴⁰ /40	18 59	27 67	FILL: Medium-dense gray fine to coarse grave, little to some fine to coarse sand, trace silt to some silty clay, cobbles, dry.						-
662.8		5	7 7 4 5	11	87	FILL: Stiff to very-stiff brown silty clay, some to "and" fine to coarse sand, some fine to coarse gravel, contains fine to coarse sand seams and						H=2.5
	- 10-	6	$\begin{bmatrix} 8 \\ 11 \\ 6 \end{bmatrix} 4$	19	100	sandstone fragments, damp.						H=3.0
658.3		8	10/8/5	16	67	FILL: Medium-dense fine to coarse gravel, some to "and" fine to coarse sand, some clayey silt,						_H=2.5-3.5
	_ 15_	9	$\frac{3}{3}$	11	100	- 3" pocket of sand at 14.5'.						-
653.8		10 	^{'3} /7 ⁴ /3/	13 8	53 67	Stiff gray clayey silt, "and" fine to coarse sand, little to some fine gravel, moist.						H=1.25 H=1.25
652.3 650.6		12	$\begin{bmatrix} 3 & 3 \\ 3 & 2 \\ 2 & 4 \end{bmatrix}$	8	53	Loose brown fine to coarse sand, "and" silty clay, some fine to coarse gravel, moist.						H=1.0
	- 20-	13	[/] / _{8/} 5	16	93	Loose to medium-dense brown fine to coarse gravel, some to "and" fine to coarse sand, some silty clay, damp to moist.						H=4.5
		14 - 15	-5^{6}_{8}	14	80 67							-
	-25-	16	6'4 3'2	6	80							
643.8		17 ⊈	4 _{/4/5}	11	73	Hard brown mottled with gray and dark-gray silty clay, little fine to coarse sand, trace fine to coarse gravel (shale fragments), slightly organic, damp.						H=3.0-4.0
641.0	-30-	18	² / ₂ /	4	100	Stiff dark-brown clayey silt, little to some fine to medium sand, slightly organic, damp.						H=1.25-2.25
WATE WAT	ER LE ER N D	VEL: OTE: ATE:	∑ 31. Inside 12/7/	0 HSA /15		27.5 G - Gradation See H - Penetro Inside Well Q - Uncon Comp Separate W - Unit Dr 12/15/15 C - Consol. Curves D - Relativ	ometer ry Wt (re Dens	(tsf) pcf) (%)	rill Rod Last Ca Dril	Energy libration l Rig Nu	Ratio : Date : mber :	0.75 8/2/2013 S&ME

LOG OF BORING NO. MW-BAP-1 Page 2 of 2 BOTTOM ASH POND MONITORING WELL INSTALLATION

F	Page	2 of	2		вотт	OM	I ASH CA	LOG OF BORING NO. MW-BAP-1 I POND MONITORING WELL INSTALLATI(ARDINAL PLANT, BRILLIANT, OH	ON	\$ \$8	ME
	DCAT RILU	FION ING I	: <u>N</u> Meth	. 8 101	20,30	5, E. 4-1/4	2,513 4'' I.F	3,927 ELEVATION:66	69.8 DATE: COMPLETIO	12/4/15 - 12/	/10/15 52.0'
Sz	AMPL	LER(S):	-		2" C).D. S	plit-barrel Sampler		· · · · · ·	
ELEV		HIH FEET 30	SAMPLE NUMBER	SAMPLE	SAMPLE EFFORT	N_{60}	SAMPLE REC-%	DESCRIPTION	NATURAL CONSI	STENCY INDEX ISTURE CONTENT X LIQUID LIMIT	TEST RESULTS
63	3.8 	<u>Σ</u>	<u>7</u> 19	ŝ	SH 1 SH SH	0	100	Very-soft to medium-stiff brown, gray and dark-gray organic clayey silt, little fine sand, contains silt seams and lenses, contains seams of fine to coarse sand, wet.			H=0.0-0.25
60		35-	20	ŝ	SH SH SH	0	100				H=0.0-0.75
ORING LOG-W/ N			21	ŝ	SH SH SH	0	100				H=0.0-0.75
VIEW DEFAULT B).7 	40-	22A 22B 22C	ŝ	SH SH ₁	0	100	Very-loose gray fine to coarse sand, interbedded with silty clay seams, wet.			
620 620	5.8		23	1	¹ / _{2/3}	6	60	Loose brown fine to coarse sand, trace fine gravel, trace silt, wet.			- - - -
		45-	24]	13 /17	50	47	fine to coarse sand, trace silt.			G
		50-	25]	⁷ 23 19 ₇₁₄ 18	40	67				-
618 61	7.3		26	ý	9 ⁷ 7 ₈	19	47	Medium-dense brown fine to coarse sand, trace fine gravel, trace clay.			
		55-						 Encountered water at 31.0'. Encountered cobbles at 4.4 and 18.2'. Borehole converted to monitoring well upon completions. See separate well completion diagram. Boring locations and elevation surveyed by AEP. Datum: Ohio State Plane South. NAD 27/NAVD 29 (Plant Grid) 			
W2 W	ATER ATER	60 CLEV RNC DA	/EL: DTE: ATE:		31. Inside 12/7/	0 HSA 15		SYMBOLS USED TO INDICATE TEST I G - Gradation See Jnside Well Uncon Comp 12/15/15 C - Consol.	RESULTS ometer (tsf) ry Wt (pcf) ve Dens (%) Drill R Last (D	od Energy Ratio : Calibration Date : Drill Rig Number :	0.75 8/2/2013 S&ME

LOG OF BORING NO. MW-BAP-2 Page 1 of 2 BOTTOM ASH POND MONITORING WELL INSTALLATION

Ра	ige 1 d	of 2	ł	вотт	OM	I ASH	LOG OF BORING NO. MW-BAP-2 I POND MONITORING WELL INSTALLATIC ARDINAL PLANT, BRILLIANT, OH	DN				58	ME
LO	CATIO	N: <u>N</u>	. 81	19,792	2, E.	2,51	3,707 ELEVATION: 66	9.9	DAT	E:	12/2/1	5 - 12	/4/15
DR SA	ILLINC MPLER	i METH (S):	10D	:	4-1/4 2" ()	(COMPLETION DEPTH:45.0'						
~	É,	ELE ELE	EE	ברו		E		NAT	URAL (CONSIST	ENCY IN	DEX	TEST
ELEV	T T T T T T T T T T T T T T T T T T T	AMPI	AMP	FFOF	N 60	AMP UEC-6	DESCRIPTION		NATUR/	AL MOIS:	-X LUKE CO	NTENT	RESULTS
-	+0-	N Z	S) C	vш		S. T	AGGREGATE - 23 INCHES	∠	0	<u>LIMIT</u> 20	-LIQUID 30 4	0	
			19	,									-
668.		1		'11 _{/25}	45	87	FILL: Dense to very-dense dark-gray fine to	-					
666.	3	2	2:	5/33/	79	47	coarse sand, trace to little fine gravel, trace to little silt, moist.						-
			33	3/ 30	~ (FILL: Stiff to hard brown and dark-brown silty clay some to "and" fine to coarse sand little to						
090	- 5 -	3	1	¹¹¹ /8	24	60	some fine to coarse gravel, few pockets of gravel, dry becoming damp						H=2.0
		4	1	¹ /9/	30	67	ary second damp.						H=4.5
NGTC			8	/15	•								-
BORI		5		′ ⁹ / ₁₃	28	80							-
FAULT		6	4	6,	19	60							-
W DEI	- 10-	_	7	/ 9									
010 NE		7		′ ⁵ / ₅	13	87							
5		8	4	/10/	23	80							H=2.0-4.5
		9	2	· 8 / ₈ ,	14	53							H=2.5
655.	4	_	3	/ 3			FILL: Medium-stiff to verv-stiff brown mottled						
	- 13-	10		^{'6} / ₅	14	67	with gray silty clay, some fine to coarse sand, little fine to coarse gravel, moist.						H=3.5
		11	2	¹ 3 ₁	9	87	-						H=1.0-2.25
		12	3	4	10	67							H=0 75 1 5
		12		³ /5	10								
650.	- 20-	13	3	[/] 3 _/	9	87	FILL: Very-loose to loose dark-gray fine to	-					H=2.0
		-	3	· 4	0		coarse sand, trace to little fine gravel, little silt, moist becoming wet						-
		14	S	⁴ /3	9	67	Contains sand seams at 20.0' to 20.2'						-
		15		SH 1	0	100	- Contains sand scalls at 20.0 to 20.3.						-
		16	S	H 1,	3	100							
644	7 - 25-	_	1	/ 1									
643.	9	17		$\begin{bmatrix} & 1 & & \\ & & & 1 \\ & & & 1 \end{bmatrix}$	3	100	FILL: Very-loose dark-gray silt, trace fine to						H=0.5
		18	S.	SH ₂	0	53	Stiff gray mottled with brown silty clay, some fine sand, trace medium to coarse sand slightly					H=2.0	
641.	9						organic, silt seams, damp.						
		_{₹219}	S	н SH,	0	100	Medium-stiff dark-gray organic clayey silt, little fine sand, damp.			H=1.0			
WA	⊔ 30- FER LF	VEL:	Ā	29.1	2	⊥ 	SYMBOLS USED TO INDICATE TEST F	RESULTS		Drill Rod	Energy	Ratio :	0.75
WA	TER N	OTE: ATE:		Inside 12/15	Well /15		Q - Uncon Comp See H - Penetro T - Triax Comp Separate W - Unit Dr C - Consol. Curves D - Relativ	ometer (19 Wt (p 7e Dens	(%)	Last Cal Dril	libration l Rig Nu	Date : mber :	8/2/2013 S&ME
<u> </u>			-								0		ATV 550-2

LOG OF BORING NO. MW-BAP-2 Page 2 of 2 BOTTOM ASH POND MONITORING WELL INSTALLATION CARDINAL PLANT, BRILLIANT, OH

LOCA	ATIO	N: <u>N</u>	N. 8	819,7	92,	E. 2	2,513	3,707 ELEVATION: 66	9.9		DA	TE:	12	2/2/15	5 - 12	/4/15
DRIL SAM	LING PLER	METI	HOI	D: _	<u>4-</u> 2"	1/4 0	<u>" I.D</u> .D. S	9. Hollow-stem Auger nlit-barrel Samnler			COMI	PLETION	√ DE	PTH:	4	5.0'
ELEV.	JEPTH, FEET	AMPLE UMBER	AMPLE	AMPLE FFORT		00	AMPLE tec-%	DESCRIPTION		NATURAL CONSISTENCY INDEX						TEST RESULTS
639.4	-30-	<u>v Z</u>	Š	Sп			S. T	Stiff gray mottled with brown silty clay little fine		PL7	0	20	$\frac{2}{30}$	1QUID 4	LIMIT 0	
		20	ŝ	SӉ 2,	$\begin{bmatrix} 1 \\ \vdots \\ 2 \end{bmatrix}$	5	100	sand, trace medium to coarse sand, slightly organic, damp.								H=1.5
636.2			1	1,				Loose fine to coarse sand trace fine gravel little								
634.4	- 35-	21		′3 _/	3	3	100	to some silt, slightly organic, moist.		· · · · · · · · · · · · · · · · · · ·						H=1.5
		22	1	¹ / ₄ /	1	0	53	Loose brown fine to coarse sand, trace fine gravel, trace to little silt.		· · · · · · · · · · · · · · · · · · ·						
				2	4											
	-40-	23		′2 _/	2	5	67									G
		24	2	² / ₂ /	3	5	100			· · · · · · · · · · · · · · · · · · ·						
			2	2		_	100									
624.9	-45-	25		2/	2	,	100									
								- Encountered water at 14.5'. to 16.0'. - Borehole converted to monitoring well upon								
								completion - See separate well completion digram. - Boring location and elevation surveyed by AEP								
	- 50-							 Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid). 								
	- 55-	-														
WATE WAT	- 60- Er le Er n	VEL: OTE:	<u> </u>	2 Insid	9.2	ell	¥	SYMBOLS USED TO INDICATE TEST R G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr	RESUI	TS r (r	(tsf)	Drill Ro Last C	d En Calibi	nergy l	Ratio : Date :	0.75 8/2/2013
IOD. /	D	ATE:		12/	15/15	5		T - Triax Comp Curves D - Relativ	ve De	ens	(%)	Di	rill R	kig Nu	mber :	S&ME ATV 550-2

2010 NEW DEFAULT BORING LOG-W/ N60

S&ME

LOG OF BORING NO. MW-BAP-4 Page 1 of 2 **BOTTOM ASH POND MONITORING WELL INSTALLATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,880, E. 2,513,617 11/20/15 - 11/23/15 ELEVATION: 661.1 DATE: 40.0' DRILLING METHOD: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: SAMPLER(S): 2" O.D. Split-barrel Sampler SAMPLE NUMBER SAMPLE NATURAL CONSISTENCY INDEX SAMPLE SAMPLE REC-% EFFORT DEPTH TEST ELEV NATURAL MOISTURE CONTENT N 60 DESCRIPTION RESULTS OUID LIMI T, TMT 0 **AGGREGATE - 12 INCHES** 10 20 30 40 660.1 FILL: Medium-dense to dense gray and brown 39 87 15 fine to coarse gravel, some to "and" fine to coarse H=4.25-4.5 1 16 sand, little to some silt, dry. 10 18 53 2 9 20 67 3 9 5 655.8 N60 655.3 FILL: Very-soft brown and gray silty clay, "and" 35 2010 NEW DEFAULT BORING LOG-W/ fine to coarse sand, little fine to coarse gravel. 31 4 87 • × G 13 FILL: Dense brown fine to coarse sand, little fine 20 5 653.6 50-3"R to coarse gravel, "and" clayey silt, cobbles, moist. Stiff to very-stiff dark-brown mottled with dark-gray silty clay, little fine to coarse sand, trace fine gravel, slightly organic, damp. 3 9 87 ×Ò H=2.0-3.0 6 \times - 10-Р H=1.25-2.5 15 644.9 Very-stiff brown mottled with gray silty clay, 14 7 5 87 H=2.0-3.5 little fine to medium sand, trace coarse sand, few 6 cobbles, contains silt seams near top of stratum, damp. 7 18 20-100 H=2.25-3.25 28 10 9 14 100 H=3.0 5 10 14 100 H=3.25 5 25 9 100 H=2.5 634.4 11A 3 Medium-stiff to stiff brown clayey silt, "and" fine 11B H=0.5-1.5 to medium sand, trace coarse sand, includes sand seams, moist. 100 12 4 30 SYMBOLS USED TO INDICATE TEST RESULT: ∇ Ţ Drill Rod Energy Ratio : 0.75 WATER LEVEL: 18.7 - Gradation - Uncon Comp See H - Penetrometer (tsf) Last Calibration Date : WATER NOTE: Inside Well 8/2/2013 Separate W-Unit Dry Wt (pcf) T - Triax Comp C - Consol. 12/15/15 DATE: Curves D-Relative Dens (%) Drill Rig Number : S&ME ATV 550-2

LOG OF BORING NO. MW-BAP-4 Page 2 of 2 BOTTOM ASH POND MONITORING WELL INSTALLATION CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,880, E. 2,513,617 11/20/15 - 11/23/15 ELEVATION: 661.1 DATE: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: 40.0' DRILLING METHOD: SAMPLER(S): 2" O.D. Split-barrel Sampler SAMPLE NUMBER SAMPLE NATURAL CONSISTENCY INDEX SAMPLE REC-% SAMPLE EFFORT DEPTH TEST ELEV NATURAL MOISTURE CONTENT N_{60} DESCRIPTION RESULTS T, TMT OUID LIMI 30-630.6 Medium-stiff to stiff brown clayey silt, "and" fine 10 20 30 40 to medium sand, trace coarse sand, includes sand SH seams, moist. 100 13 0 ′SΗ, Very-loose brown and gray fine to medium sand, G little to "and" silt (percent varies), contains zones with a trace of coarse sand, wet. SH 14 0 67 ′SΗ, 35 2010 NEW DEFAULT BORING LOG-W/ N60 15 3 67 1 SH 16 0 100 ′SH, G 621.1 40-- Encountered water at 5.5'. - Encountered cobbles at 18.5'. - Borehole converted to monitoring well upon completion - See separate well completion diagram. - Boring location and elevation surveyed by AEP. 45 - Datum: Ohio State Plane South, NAD 27/NAVD 29 (Plant Grid). 50 55

SYMBOLS USED

See

Separate

Curves

- Gradation - Uncon Comp

- Triax Comp - Consol.

G Q T

С

TO INDICATE TEST RESULTS

H - Penetrometer (tsf)

W-Unit Dry Wt (pcf)

D-Relative Dens (%)

60

WATER LEVEL:

WATER NOTE:

DATE:

 ∇

18.7

Inside Well

12/15/15

Ţ

8/2/2013

S&ME

Drill Rod Energy Ratio : 0.75

Drill Rig Number :

Last Calibration Date :

]	Page 1 of 3 LOG OF BORING NO. MW-BAP-5 BOTTOM ASH POND MONITORING WELL INSTALLATION CARDINAL PLANT, BRILLIANT, OH														
L	OC/	ATIO	N: <u>N</u>	. 820,0 5	2, E.	2,51	3,277 ELEVATION: 66	9.2 DATE:	11/24/15 - 11	/25/15					
D	RIL	LING	MET	HOD:	4-1/4	4" I.I). Hollow-stem Auger	COMPLETIO	N DEPTH: 6	2.5'					
S	AM	PLER	(S):		2" C).D. S	plit-barrel Sampler								
	ELEV.	, DEPTH, FEET	SAMPLE NUMBER	SAMPLE SAMPLE EFFORT	N 60	SAMPLE REC-%	DESCRIPTION	STENCY INDEX ISTURE CONTENT	TEST RESULTS						
	0.0	- 0 -	Į				AGGREGATE - 12 INCHES		30 40						
00	8.2		1	6 _{/8/11}	24	60	FILL: Medium-dense brown fine to coarse sand, some fine to coarse gravel, some to "and" silty clay, dry.								
			2	$\frac{10}{5}$	13	60				-					
66	3.7	- 5 -	3	4 _/ 6	13	73	FILL: Hard gray and brown silty clay "and" fine	• • • • • • • • • • • • • • • • • • •		G					
אם דרכים- אי			4	[/] 9/ ₃₂	51	87	to coarse sand, little to some fine to coarse gravel, damp.			H=4.5					
66	0.7		5 -	15/16 10/16	39	80	FILL: Medium-dense brown and gray fine to			H=4.5					
65 AD	9.2	-10-	6	' ¹³ / ₁₁	30	87	coarse sand, little fine to coarse gravel, some silty clay, damp. FILL: Hard brown silty clay, some fine to coarse	• × · · · · · · · · · · · · · · · · · ·	*	H=4.5					
NT 0 107				Р 3			sand, some fine to coarse gravel (shale fragments), damp.								
65	5.7		7	$\frac{5}{10}$	19	80	FILL: Medium-dense to dense brown fine to			H=4.5					
		- 15-	8	25	45	80	coarse gravel, some fine to coarse sand, some silty clay becoming trace silt at bottom of stratum,			H=3.0					
65	2.3		9 10A	⁷ / ₆	16 20	100									
			10B -	′6 _/ _10 P			and brown silty clay, trace fine to coarse sand, trace fine gravel, few roots, few silt seams, slightly organic, moist.								
		- 20-	11	SӉ	5	100				H=0 5-1 25					
64	6.2		11	¹ /3	5	100	Medium-stiff to very-stiff brown mottled with			LI-0.3-1.23					
		-25-	12	² / ₂ / ₄	8	100	gray silty clay, trace to little fine to coarse sand, damp.			H=3.5					
			Ţ	Р					•						
				Р											
W V	ATE VAT	∟ 30– ER LE ER N	VEL: OTE:	$\frac{\frac{\nabla}{27}}{\frac{\text{Inside}}{12/1}}$.1 Well 5/15		G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curres D - Relativ	ESULTS meter (tsf) y Wt (pcf) e Dens (%)	od Energy Ratio : Calibration Date : Drill Rig Number :	0.75 8/2/2013 S&ME					
		D							······································	ATV 550-2					

-CONTINUED-

Pag	ge 2 o	f 3	BOT	ГОМ	I ASH CA	LOG OF BORING NO. MW-BAP-5 I POND MONITORING WELL INSTALLATI(ARDINAL PLANT, BRILLIANT, OH	ON	\$ \$8	ME		
LOC	ATION	N: N .	820,05	2, E.	2,51	3.277 ELEVATION: 66	59.2 DATE:	11/24/15 - 11	/25/15		
DRII	LING	METH	OD:	4-1 /4	4" I.E	D. Hollow-stem Auger	COMPLETIC	ON DEPTH: 6	52.5'		
SAM	PLER((S):		2'' O	D.D. S	plit-barrel Sampler					
ELEV.	EPTH, FEET	MPLE	MPLE	N 60	MPLE EC-%	DESCRIPTION	PTION				
Н	+30-	NL NL	SA EI		$^{\rm SA}_{ m R}$	Madium at 10 to some at 10 harrow monthlad with	PLASTIC LIMIT	<u>LIQUID LIMIT</u>	RESULTS		
		13	² / _{4/6}	13	100	gray silty clay, trace to little fine to coarse sand, damp.			H=2.0-3.5		
non'	- 35-	14	³ / _{4/5}	11	100				H=2.5-3.0		
		15	² / ₅ / ₆	14	100				H=2.5		
THOUSE NEW THOUSE	- 40-	16	² / _{3/5}	10	100				H=2.5		
102		17	SH 2/3	6	100				H=1.25		
623.7	- 45-	18	SH SH SH	0	100	Stiff arow mottled with brown and dark grow silty			H=1.25		
621.2		19	SH SH ₁	0	100	clay, trace fine to coarse sand, slightly organic, damp.			H=0.75		
618.7	- 50-	20	SH SH SH	0	100	Medium-stiff to stiff gray and dark-gray organic clayey silt, trace fine to coarse sand, damp.			H=0.75-1.25		
		21	⁶ / _{9/9}	23	87	Medium-dense to dense fine to coarse gravel, some to "and" fine to coarse sand, trace to little silt, wet.			G		
613.8	- 55-	22	⁸ / _{21/34}	69	87				-		
		23	14 _{/20/14}	43	80	Medium-dense to dense gray and brown fine to coarse sand, "and" fine to coarse gravel, little silt, wet.			-		
	60	24	7 / _{12/}	35	60	SYMBOLS USED TO INDICATE TEST F	RESULTS In mo		G		
WATI WAT	ER LE FER NO D	VEL: <u>-</u> OTE: _ ATE: _		.1 Well 5/15		G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relativ	pmeter (tsf) ry Wt (pcf) ve Dens (%)	cod Energy Ratio : Calibration Date : Drill Rig Number :	0.75 8/2/2013 S&ME		

JOB: 7217-15-007B

-CONTINUED-

Page 3 of 3 LOG OF BORING NO. MW-BAP-5 BOTTOM ASH POND MONITORING WELL INSTALLATION CARDINAL PLANT, BRILLIANT, OH

LOCATION: N. 820.052, E. 2,513.277 ELEVATION: 669.2 DATE: DI24/15 - 11/25/1 SAMPLERION: 2" O.D. Split-barrel Sampler COMPLETION DEPTH: 6.25' SAMPLERION: 11/10 10 10 25' 10 <td< th=""><th></th><th colspan="14">LOCATION: N 820.052, E 2.513.277 ELEVATION: 669.2 DATE: 11/24/15 - 11/25/</th></td<>		LOCATION: N 820.052, E 2.513.277 ELEVATION: 669.2 DATE: 11/24/15 - 11/25/													
DRLING METHOD: 4-1/4" 1.D. Hollow-sten Auger COMPLETION DETTI: 62.5" SAMPLERS; 2" O.D. Split-barrel Sampler DESCRIPTION DESCRIPTION DESCRIPTION Image: State and S	LOC	CATION: N	N. 820,05	2, E.	2,51	3,277 ELEVATION: 66	69.2 DATE:	11/24/15 - 11	/25/15						
SAMPLAR(s) 2" 0.D. Split-barrel Sampler Image: Sample in the same sample in the same sample in the same sample in the same same sample in the same sample in the same same same same same same same sam	DRI	ILLING MET	HOD:	4-1/4	4" I.I). Hollow-stem Auger	COMPLETIC	N DEPTH: 6	2.5'						
E E E Barrow Control of Control	SAN	MPLER(S):		2" C).D. S	plit-barrel Sampler									
¹⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰ ²⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰ ²⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰	LEV.	EPTH, EET MPLE MBER	MPLE MPLE FORT	V 60	MPLE EC-%	DESCRIPTION	NATURAL CONSI	STENCY INDEX ISTURE CONTENT	TEST						
Medium-dense to dense gray and brown fine to 10 20 30 40 665 25 5 / 4 / 5 11 60 11 10 10 20 30 40 665 65 65 10 20 10	н		SA SA EF		SA RI		PLASTIC LIMIT	<u> LIQUID LIMIT</u>	RESULTS						
988.7 25 7'4', 0 11 60 -65 -65 -65 -0 -0 -0 -70- -0 -0 -0 -0 -0 -70- -70- -0 -0 -0 -0 -0 -70- -70- -70- -0 -0 -0 -0 -0 -70- -70- -70- -70- -0 -0 -0 -0 -0 -70- -70- -70- -0			8 16			Medium-dense to dense gray and brown fine to coarse sand, "and" fine to coarse gravel, little silt,		30 40	-						
-65- -65- -65- -70 -70 -70 -70 -70 -75- -75- -76- -77- -78- -78- -77- -78- -80- -80- -80- -80- -80- -80- -80- -80- -80- -80- -80-	606.7	25	⁴ / ₅	11	60	wet.			-						
 - Encountered water at 17.0°. - Borchole convected to monitoring well upon completion. See separate well completion diagram. - Boring location and elevation surveyed by AEP. - Datam: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid). 									-						
Completion. See separate well completion diagram. - Boring location and elevation surveyed by AEP. - Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid). - 70- - 70- - 75- - 80- - 80- - 80- - 88- - 88-	0	-65-				Encountered water at 17.0'.Borehole converted to monitoring well upon			-						
- Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid).	0-W/ N6					 completion. See separate well completion diagram. Boring location and elevation surveyed by AEP. 			-						
	RING LC					- Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid).									
	AULT BO								-						
1 -75- -75- - -80- - <td< th=""><td>VEW DEF</td><td>- 70-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	VEW DEF	- 70-							-						
	2010 N								-						
									-						
		- 75-							-						
									-						
									-						
		- 80-							-						
									-						
		05							-						
									-						
									1						
		<u>_90</u>				CVMDATO חומים האהדראתי היא לא אין לא אין אין אין אין אין אין אין אין אין אי			1						
WATER LEVEL:	WAT WA	TER LEVEL: TER NOTE: DATE:	<u> </u>	.1 Well 5/15		G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relativ	Image: New YorkImage: New YorkOmeter (tsf)Image: New Yorkry Wt (pcf)Image: New Yorkve Dens (%)Image: New York	od Energy Ratio : Calibration Date : Drill Rig Number :	0.75 8/2/2013 S&ME						

Appendix C

Monitor Well Construction Logs

Sampled Monitor Wells

MONITORING WELL INSTALLATION LOG

MONITORING WELL INSTALLATION LOG

MONITORING WELL INSTALLATION LOG

Water Level Only Monitor Wells

		ľ							♠S&MF
Elevation	Depth Below								
(Feet above MSL)	Ground Surface (Feet)								
672 65	-2 86	Top of Cov	ver						
072.00	-2.00	100 01 000	VCI				⊽	4 - Inc	h Diameter Protective Steel Casing
672.29	-2.50	Top of PV	С			┓┟			
							~	2 - Inc	h Diameter Flush-Thread PVC Casing
				_		ΓΙ			
669.79	0.0	Ground St	urface				X .	Ground Surf	ace
667.2	26	Top of Gro	out			H		Concrete	
007.2	2.0		Jul			\emptyset		Concrete	
								Boring Diam	eter (in inches)
							Ja-	8 "	0.0 to 52.0
							1	<u> </u>	to
						$\langle \rangle \rangle$		"	to
						VA	1		
						\mathcal{V}		Grout: Port	land & Quick Gel
638.9	30.9	Top of Ber	ntonite						
000.0	00.0	TOP OF DOI	torne		\bigotimes	\otimes	}		
					KXI –	Ŕ		Bentonite Se	eal: 3 - 5 gallon buckets (15 gal.)
					× X	₿¥			bentonite pellets
		T (51)	D 1		× ×	\bowtie			
632.2	37.6	I op of Filte	er Pack		43				
								10 - Sic	nt Screen
								<u> </u>	d Ocicen
628.2	41.6	Top of Scr	een Openir	igs		r	-		
					$ $ \equiv				
							1		
					- i -				
								Filter Pack:	4 - 50 lb bags (200 lb.) #5 quartz sand
						1		-	
					8 I -				
					\sim $=$				
619 /	51 4	Pottom of	Sereen On	ninge	\sim \pm	Ê.			
010.4	51.4	BOLLOIN OF	Scieen Ope	sinnys)			
					X				
617.8	52.0	Bottom of	Well						
							1		
047.0	50.0	D <i>U</i> (. .		(NOT TO S	SCALE	E)		
617.8	52.0	Bottom of	Boring						
Denth to	Static Water	28.7	27 5						
		20.7	21.0						
Static W	ater Elevation:	638.6	639.8						
	Date:	12/11/15	12/15/15					_	
	nment.								
12/10 - Rail	ed 175 gallons	of water (a	approx. 41 v	vell volum	ies) via s	suhm	nersible nu	mp. Water	WELL COMPLETION DIAGRAM
level staved	d steady during	pumpina.	NTU = 7 a	t 155 gall	ons, but	incre	eased to N	TU = 12	Project Name
upon termir	nating pump.	Bailed addit	tional 20 ga	llons durir	ng which	initia	al NTU rea	dings were	AFP CD Bottom Ash Pond Monitoring Wells
intially high	but decreased	l to NTU = 2	25.4.						Project Location:
-Water leve	el measuremen	it on 12/15	was immed	iately bef	ore slug	testi	ng.		Cardinal Plant / Brilliant Obio
- I op cover	set in 3'x3' cor	crete pad.	Protective	steel bolla	aros plac	ced a	around cone	crete pad.	
L									7217-15-007A
Water Oue	lity Readings /	Horiba II Fr	2)						Boring Number
	Jative Gallons	NTU	-) C	ms/cm	PH	1	ORPmV		MW-BAP-1
Cum	175	25 4	18.00	1 21	74	5	_6		
Location		20.4 E 0.540.0	10.09	1.31 Dot::::	7.13 m: NA DC	J)7/N/	-0 ייס מכת/גם	\$	12/10/2015
Location:	IN. 820,305.3	⊑. ∠,513,9	21.4	Datur	n: NAD2	27/N	GVD29 OH	3	12/10/2013

Elevation (Feet above MSL)	Depth Below Ground Surface (Feet)							\$S&ME			
672.28	-3.10	Top of Cov	ver		·	, ,					
672.00	-2.82	Top of PV(- -			·	<u>4</u> - Inch	Diameter Protective Steel Casing			
012.00	-2.02		5				2 - Inch	n Diameter Flush-Thread PVC Casing			
669.18	0.0	Ground Su	Irface			$\overline{\mathbf{X}}$	Ground Surfa	ice			
662.6	6.6	Top of Gro	ut				Concrete				
							Boring Diame	ster (in inches)			
							8 "	0.0 to 62.1			
						í ·		to			
							"	to			
						1					
							Grout: <u>Portl</u>	and & Quick Gel			
625.0	44.2	Top of Ber	ntonite								
					88		Bentonite Sea	al: <u>3 - 5 gallon buckets (15 gal.)</u> bentonite pellets			
619.5	49.7	Top of Filte	er Pack								
010.0	40.1										
							10 - Slot	Screen			
617.5	51.7	Top of Scr	een Openir	ngs		T					
							Filter Pack: <u>7</u> —	′ - 50 lb. bags (350 lb.) #5 quartz sand			
607.7	61.5	Bottom of	Screen Ope	enings							
607.1	62.1	Bottom of	Well								
606.7	62.5	Bottom of	Boring		(NOT TO SCALE)					
Depth to	o Static Water:	27.3	27.6	27.2	27.1						
Static Wa	ater Elevation:	639.1	638.8	639.2	639.2						
	Date:	11/29/15	12/7/15	12/11/15	12/15/15						
M				1				r			
Well Develo	opment: led 61 5 gallon:	s of water /	approx 12	well volum	les) out of w	ell via subr	nersihle	WELL COMPLETION DIAGRAM			
pump, wate	er level stayed	steady.	~pp:07. 10					Project Name:			
-Measurem	ent on 12/15 w	as immedia	ately before	e slug testi	ng.			AEP CD Bottom Ash Pond Monitoring Wells			
- I op cover	set in 3'x3' con	crete pad.	Protective	steel bolla	rds placed a	around cond	crete pad.	Project Location:			
Water Qual	lity Readings (I	Horiba U-52	2)					Cardinal Plant / Brilliant, Ohio			
Cumu	ulative Gallons	NTU	C	ms/cm PH ORPmV			Project Number:				
	61.5	24.3	15.08	1.46	6.86	-56		7217-15-007A			
	Location	N 000 050	1 E 0 54	2 077 E				Doring Number:			
	Location: Datum:	NAD27/NG	. i ⊏. 2,51 3VD29 OH	3,∠11.5 S				Date Well Installed:			
<u>.</u>			•.1					11/25/2015			